
Adaptive Binning with Weighted Voronoi

Tesselations: WVT BINNING

User’s Manual

Steven Diehl

July 2005



c© 2005

Steven Diehl

All rights reserved



Preface

This manual is intended to give a hands-on introduction on how to use the

main features of the adaptive binning technique WVT BINNING. Throughout the doc-

ument, we will denote all pixel indices with the letters k and l. Bins will be denoted

with i and j to avoid confusion. Accordingly, the signal and noise per pixel will be

denoted as Sk and Nk, respectively. In addition, we will also use the slightly different

calligraphic characters for bins: Si and Ni. All bins will be abbreviated with the

letter V .

Each chapter of this manual is divided into several sections, starting with

a general description of the required input parameters, followed by some examples.

Among those, we start with the easiest case and increase in complexity (but also cor-

rectness) toward the end. The last chapter contains a general description of keywords

which can improve the performance of the algorithm.

The examples in this manual use various procedures or functions from the

Astro IDL library, which is available at http://idlastro.gsfc.nasa.gov/homepage.html.



4

Table of Contents

Preface 3

Table of Contents 4

1 Desciption of the adaptive binning method (WVT BINNING) 6
1.1 Modified bin accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Redistribute unbinned pixels . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 WVT iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 WVT IMAGE: Intensity binning of X-ray images 7
2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Main Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 SIGNAL [input, required] . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 NOISE [input, required] . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 TARGETSN [input, required] . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 BINNEDIMAGE [output, required] . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 XNODE, YNODE, WEIGHT [output, optional] . . . . . . . . . . . . . . . 8

2.3 Prescription to compute signal to noise . . . . . . . . . . . . . . . . . . . . . 9
2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Binning of X-ray counts images . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Binning of exposure corrected flux images . . . . . . . . . . . . . . . 10
2.4.3 Binning of background corrected images . . . . . . . . . . . . . . . . 11
2.4.4 Isolating components of linear combinations of images . . . . . . . . 12

3 WVT XRAYCOLOR: Binning of Hardness Ratios 15
3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Main Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 SIGNAL [input, required] . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 NOISE [input, required] . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 SIGNAL2 [input, required] . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 NOISE2 [input, required] . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.5 TARGETSN [input, required] . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.6 BINNEDIMAGE [output, required] . . . . . . . . . . . . . . . . . . . . . 16
3.2.7 XNODE, YNODE, WEIGHT [output, optional] . . . . . . . . . . . . . . . 17



5

3.3 Prescription to compute signal to noise . . . . . . . . . . . . . . . . . . . . . 17
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Count hardness ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Background corrected flux hardness ratios . . . . . . . . . . . . . . . 18

4 WVT PIXELLIST: Binning of pixel lists 20

5 Spectral maps with SHERPA/CIAO 21
5.1 Cookbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Details of Single Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 WVT TEMPERATUREMAP: Create the binning and extract event lists . . 25
5.2.3 tempmap generic.csh: Fit a spectral model with Sherpa . . . . . . 26
5.2.4 WVT EVALTEMPERATUREMAP: Generate the temperature map . . . . . . 27

6 Detailed description of parameters 28
6.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1.1 PLOTIT [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.2 QUIET [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.3 GERSHO [WVT BINNING, WVT IMAGE, WVT PIXELLIST] . . . . . . . . . . 29
6.1.4 SAVE ALL [WVT IMAGE, WVT XRAYCOLOR, WVT PIXELLIST] . . . . . . . . 29
6.1.5 RESUME [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.6 KEEPFIXED [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.7 CENTER [WVT IMAGE, WVT XRAYCOLOR] . . . . . . . . . . . . . . . . . . 30
6.1.8 MAX AREA [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.9 MASK [WVT IMAGE, WVT XRAYCOLOR] . . . . . . . . . . . . . . . . . . . 31
6.1.10 CTSIMAGE [WVT IMAGE, WVT XRAYCOLOR] . . . . . . . . . . . . . . . . . 32
6.1.11 BINNUMBER [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.12 SNBIN [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 External Interactive Controls . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 FILE “plotit” [all] . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 FILE “stopmenow” [all] . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Sample Output 35
7.1 Text Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Graphical Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Caveats 39

Bibliography 40

A WVT GENERIC: Adopting the binning algorithm to your needs 41
A.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Step-by-step Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



6

Chapter 1

Desciption of the adaptive binning

method (WVT BINNING)

1.1 Modified bin accretion

Show pictures of example after bin accretion.

1.2 Redistribute unbinned pixels

Show pictures of example after redistribution.

1.3 WVT iteration

Show pictures of example after WVT is done. + S/N distribution

Wait with this chapter until the paper is done completely, since it will be

mostly the same text to describe the method



7

Chapter 2

WVT IMAGE: Intensity binning of

X-ray images

2.1 General Description

WVT IMAGE provides an interface to WVT BINNING to produce adaptively binned

X-ray images. These can be raw counts, exposure and/or background corrected im-

ages. The algorithm operates directly on 2-dimensional images, and has a straight-

forward basic syntax:

WVT_IMAGE, signal, noise, targetSN, binnedimage

Although WVT IMAGE will work with only these few arguments, it is far more

flexible. The complete syntax is the following:

WVT_IMAGE, signal, noise, targetSN, binnedimage, xnode, ynode, weight $

[, snbin=snbin, mask=mask, ctsimage=ctsimage,

binnumber=binnumber, binvalue=binvalue, center=center,

plotit=plotit, resume=resume, save_all=save_all,

max_area=max_area, gersho=gersho, keepfixed=keepfixed,

quiet=quiet ]

For X-ray data, it is recommended always to supply the counts image (CTSIMAGE,

s6.1.10), as well as the mask file (MASK, s6.1.9)



8

2.2 Main Parameters

Here is a short, general description of the main parameters. For a complete

description of all the keywords, please refer to chapter 6 or the IDL files directly.

Have a look at section 2.4

2.2.1 SIGNAL [input, required]

A two-dimensional image, containing the signal per pixel. The image can

be background subtracted or exposure map corrected, as long as the NOISE image

reflects this. If the ‘pixels’ are actually the apertures of an integral-field spectrograph,

then the signal can be defined as the total flux in the spectral range under study, for

each aperture.

2.2.2 NOISE [input, required]

Two-dimensional image (same size as SIGNAL), containing the noise associ-

ated with each pixel (sqrt(variance)).

2.2.3 TARGETSN [input, required]

The desired signal-to-noise ratio in the final 2D-binned data. A TARGETSN

between ∼ 4 − 10 is standard for X-ray images, a temperature map would require

higher TARGETSN (∼ 30 − 100), depending on the spectral model used. For integral

field spectroscopy, a TARGETSN of ∼ 50 per bin may be a reasonable value to extract

stellar kinematics information from galaxy spectra. In general, the higher TARGETSN

is, the fewer bins will be computed, and thus the lower the resolution will be.

2.2.4 BINNEDIMAGE [output, required]

The final binned image will have the same size as the input image SIGNAL.

2.2.5 XNODE, YNODE, WEIGHT [output, optional]

The locations of the WVT bin generators, together with the associated

weights for the WVT. This set of three 3 parameter values is sufficient to recon-



9

struct the complete binning scheme and/or to apply it to different data sets. This

represents the most efficient way to save and/or distribute the binning structure.

2.3 Prescription to compute signal to noise

WVT IMAGE assumes that the signal-to-noise ratio of a bin can be computed

in the following manner:

(S/N )i =

∑
k∈Vi Sk√∑
k∈Vi N

2
k

, (2.1)

Note: If this is not the case for your type of data, you have to adjust the

functions ADD SIGNAL and/or ADD NOISE as described in section A.

2.4 Applications

Although all of our examples are drawn from applications to X-ray data, we

should emphasize that the algorithm is not restricted to X-ray analysis, but rather

to any type of 2-dimensional data.

2.4.1 Binning of X-ray counts images

The easiest way to get a first impression of X-ray images is to have a look at

the raw counts image Ck. Due to the sparse nature of X-ray data, it is in most cases

necessary to bin the data in order to gain some kind of insights about the spatial

distribution. Here, the signal and noise per pixel are defined as follows:

Sk = Ck (2.2)

Nk =
√
Ck. (2.3)

WVT IMAGE will correctly compute the signal and noise in the bins according to

equation 2.1. Thus, after simplifying equation 2.1, the S/N per bin can be expressed

as

(S/N )i =

√∑
k∈Vi

Ck, (2.4)



10

and binning to a constant target S/N is equivalent to binning to a constant number

of counts per bin1 : CTarget = (S/N )2
Target

Example:

;Read in the counts image

ctsimage=mrdfits(’img.fits’,0, header)

signal=ctsimage

noise=sqrt(ctsimage)

targetSN=5d0 ; ~25 counts per bin

;Perform the binning, with target signal-to-noise of 5

wvt_image, signal, noise, targetSN, binnedimage

;Save the output in another fits image, keeping the WCS information (header)

mwrfits, binnedimage, ’abinned.fits’, header

2.4.2 Binning of exposure corrected flux images

If one is interested in removing artifacts in the counts image due to instru-

ment structures such as node boundaries or chip edges, one should use the exposure

map Ek. In order to convert counts to physical units of photons sec−1 cm−2 arcsec−2

one has to divide by the exposure map and the effective exposure time2.

Sk = Ck/Ek (2.5)

Nk =
√
Ck/Ek. (2.6)

1This is one of the few cases, where you can make use of the keyword GERSHO (see s6.1.3 for more details).
2For examples on how to use exposure maps, please refer to the official CIAO website



11

Example:

;Read in the counts image and exposure map

ctsimage=mrdfits(’ctsimg.fits’,0, header)

expmap=mrdfits(’expmap.fits’,0)

dim=size(ctsimage,/dimension)

; Create a mask from the exposure map (1=good, 0=bad),

; to avoid regions outside the chip boundaries

mask=intarr(dim[0],dim[1])

wh=where(expmap GT 0)

mask[wh]=1

; Create the flux image and the associated noise image

signal=dblarr(dim[0],dim[1])

noise=dblarr(dim[0],dim[1])

signal[wh]=ctsimage[wh]/expmap[wh]

noise[wh]=sqrt(ctsimage[wh]/expmap[wh]^2)

; Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, mask=mask

; Save the output in another fits image, keeping the WCS

mwrfits, binnedimage, ’abinned.fits’, header

2.4.3 Binning of background corrected images

Let’s assume a spatially variable background Bk across the image that you

know with a 1σ accuracy σB,k. Then, you can define the signal and noise in as

Sk = Ck/Ek −Bk (2.7)

Nk =
√
Ck/E2

k + σ2
B,k. (2.8)

There are various possibilities for how to find such a background: The easiest

way is to use blank sky fields, normalized to the appropriate exposure time. These

images can either be subtracted directly, or a fit can be used alternatively (uniform

background, tilted plane, etc.). Another option is to use a local background on the

same chip, derived from source free regions, or a surface brightness profile fit.



12

Example:

; Read in fluxed signal and noise (no background correction)

ctsimage=mrdfits(’cts.fits’,0, header)

expmap=mrdfits(’expmap.fits’,0)

dim=size(signal,/dimension)

; Create a mask from the exposure map (1=good, 0=bad),

mask=intarr(dim[0],dim[1])

wh=where(expmap GT 0)

mask[wh]=1

; Define a flat background value (from a model fit, etc.)

bgvalue=1d-10

sigma_bg=0.1*bgvalue ; assume a 10% error on the bg value (example)

; Create the flux image and the associated noise image

signal=dblarr(dim[0],dim[1])

noise=dblarr(dim[0],dim[1])

signal[wh]=ctsimage[wh]/expmap[wh]-bgvalue

noise[wh]=sqrt( ctsimage[wh]/expmap[wh]^2 + sigma_bg^2 )

; Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, ctsimage=ctsimage, mask=mask

; Save the output in another fits image, keeping the WCS

mwrfits, binnedimage, ’abinned.fits’, header

2.4.4 Isolating components of linear combinations of images

In X-ray astronomy, images are often composed of various components that

contribute in spectrally distinct ways to the total image. Thus, the image can be

considered as a linear combination of these components. A good example is the X-ray

emission of elliptical galaxies, where one is often faced with the problem of removing

the contribution of unresolved point sources to the diffuse emission. We will use this

particular example to demonstrate the capabilities of the binning algorithm, although

it can easily be generalized to other problems.

To remove the contribution of unresolved point sources, we use the fact that

the hot gas and point sources contribute differently to the soft and the hard bands.

Let FS and FH represent the background-subtracted and exposure map corrected



13

soft and hard images. We can express both in terms of the unresolved point source

emission P , the gas emission G, and their respective softness ratios γ and δ:

FS = γP + δG (2.9)

FH = (1− γ)P + (1− δ)G. (2.10)

The uncontaminated gas image is then given by

G =
1− γ
δ − γ

[
FS −

(
γ

1− γ

)
FH

]
. (2.11)

For more details and instructions on how to determine the constants gamma

and delta with spectral models, please refer to Diehl and Statler (2005). If we use

the gas image Gk as our signal Sk, we have to define the noise accordingly.

Depending on your specific background values for FS and FH and their re-

spective uncertainties, it could happen that you create “artificially” high S/N values

in pixels that contain no counts. To avoid these artifacts, always supply the counts

image of the combined bands (CTSIMAGE). See s6.1.10 for more details.

Sk = Gk (2.12)

Nk =
1− γ
δ − γ

√
σ2
S,k +

(
γ

1− γ

)2

σ2
H,k (2.13)



14

Example:

;Read in the soft and hard bands

hard=mrdfits(’hard.fits’,0, header)

hard_noise=mrdfits(’hardnoise.fits’,0)

soft=mrdfits(’soft.fits’,0)

soft_noise=mrdfits(’softnoise.fits’,0)

; Define your constants gamma and delta

alpha=.5

delta=.9

;Isolate the gas emission

signal=(1d0-gamma)/(delta-gamma)*(soft-(gamma/(1d0-gamma))*hard)

noise=(1d0-gamma)/(delta-gamma)* $ $

sqrt(softnoise^2+(gamma/(1d0-gamma))^2*hardnoise^2)

;Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, ctsimage=ctsimage

;Save the output in another fits image, keeping the WCS

mwrfits, binnedimage, ’abinned.fits’, header



15

Chapter 3

WVT XRAYCOLOR: Binning of Hardness

Ratios

3.1 General Description

Another useful tool in X-ray astronomy is the generation of so-called color

maps. An X-ray “color” is generally defined as the quotient between the fluxes in two

different bands A and B. Depending on the choice of energy bands, this “hardness

ratio” map can be used as diagnostics for temperature gradients or photoelectric

absorption features for example (Sanders and Fabian 2001). A general discussion

about the physical interpretation of these maps and an appropriate choice of bands

can be found in Fabian et al. (2000), for example.

The basic, required syntax to use WVT XRAYCOLOR successfully, is as follows:

WVT_XRAYCOLOR, signal, signal2, noise, noise2, targetSN, binnedimage

The complete, more flexible syntax with all keywords (§6) is given here:

WVT_XRAYCOLOR, signal, signal2, noise, noise2, targetSN, binnedimage, xnode, ynode, weight $

[, snbin=snbin, mask=mask, ctsimage=ctsimage, binnumber=binnumber, $

binvalue=binvalue, center=center, plotit=plotit, resume=resume, $

save_all=save_all, max_area=max_area, keepfixed=keepfixed ]

Depending on your specific background values for the soft and hard band,

and their respective uncertainties, it could happen that you create “artificially” high



16

S/N values in pixels that contain no counts. To avoid these artifacts, always supply

the counts image (CTSIMAGE) of the combined bands. See s6.1.10 for more details.

3.2 Main Parameters

3.2.1 SIGNAL [input, required]

A two-dimensional image, containing the signal per pixel for band A. The

image can be background subtracted or exposure map corrected, as long as the NOISE

image reflects this.

3.2.2 NOISE [input, required]

Two-dimensional image (same size as SIGNAL), containing the noise associ-

ated with each pixel (sqrt(variance)) for band A.

3.2.3 SIGNAL2 [input, required]

The equivalent to SIGNAL for band B.

3.2.4 NOISE2 [input, required]

The equivalent to NOISE for band B.

3.2.5 TARGETSN [input, required]

The desired signal-to-noise ratio in the final 2D-binned data. A TARGETSN

between ∼ 4 − 10 is standard for X-ray color images, but will in general depend on

what type of features you want to show. As always, the higher TARGETSN, the fewer

detail you will see.

3.2.6 BINNEDIMAGE [output, required]

The final binned image will have the same size as the input images.



17

3.2.7 XNODE, YNODE, WEIGHT [output, optional]

The locations of the WVT bin generators, together with the associated

weights for the WVT. This set of three 3 parameter values is sufficient to reconstruct

the complete binning scheme and/or to apply it to different data sets.

3.3 Prescription to compute signal to noise

Here, our signal consists of the hardness ratio of the two flux values. We

define FA,k and FB,k as the flux per pixel k in the bands A and B, respectively. Thus,

we can write our signal as

Si =

∑
k∈Vi FA,k∑
k∈Vi FB,k

. (3.1)

The associated error in the hardness ratio can be expressed in terms of the noise in

the individual bands:

Ni = Si

√
(
∑

k∈Vi σ
2
A,k)

(
∑

k∈Vi FA,k)
2

+
(
∑

k∈Vi σ
2
B,k)

(
∑

k∈Vi FB,k)
2

(3.2)

If necessary, these definitions can be extended for the general use of n different bands

(for more details refer to Sanders and Fabian 2001).

3.4 Applications

3.4.1 Count hardness ratios

The easiest way to compute an X-ray color map is to use simply count hard-

ness ratios between the counts in band A and B (CA and CB, respectively):

Si =

∑
k∈Vi FA,k∑
k∈Vi FB,k

, (3.3)

Ni = Si
(

1∑
k∈Vi CA,k

+
1∑

k∈Vi CB,k

)−1/2

(3.4)

This is good to get a first impression of the general structure of the target, but

shouldn’t be used for the final analysis, since changes in the fractional contribution



18

of the background, as well as energy dependent features of the exposure map can

introduce unreal artifacts.

In this simpler case, the S/N ratio is reduced to:

Si/Ni =

(
1∑

k∈Vi CA,k
+

1∑
k∈Vi CB,k

)−1/2

(3.5)

Example:

; Read in soft and hard counts images (with header!) and the mask

soft=mrdfits(’softcts.fits’,0, header)

hard=mrdfits(’hardcts.fits’,0)

softnoise=sqrt(soft)

hardnoise=sqrt(hard)

ctsimage=soft+hard

; Bin the color map to a signal-to-noise ratio of 5

targetSN=5d0

wvt_xraycolor, soft, hard, softnoise, hardnoise, targetSN, $

binnedimage, ctsimage=ctsimage

; Save the color map

mwrfits, binnedimage, ’abinned.fits’, header

3.4.2 Background corrected flux hardness ratios

A better way to compute hardness ratios, is to use background and exposure

corrected fluxes instead of counts. In our example, we will use a flat background for

each band. However, we could have used a spatially dependent background model or

a blank sky image as well (see also §2.4).



19

Example:

; Read in soft and hard counts images (with header!)

softcts=mrdfits(’softcts.fits’,0, header)

hardcts=mrdfits(’hardcts.fits’,0)

; Read in the exposure maps for soft and hard band

softexpmap=mrdfits(’expmap_soft.fits’,0)

hardexpmap=mrdfits(’expmap_hard.fits’,0)

; Define the background values (assumed flat) and their uncertainties

softbg=1d-10

hardbg=2d-10

softbgsigma=0.1*softbg

hardbgsigma=0.1*hardbg

; Compute the fluxed images and their associated noise

softflx=softcts/softexpmap - softbg

softnoise=sqrt( softcts/softexpmap^2 + softbgsigma^2 )

hardflx=hardcts/hardexpmap - hardbg

softnoise=sqrt( hardcts/hardexpmap^2 + hardbgsigma^2 )

ctsimage=softcts + hardcts

; Create a mask from the exposure maps:

mask=(softexpmap GT 0) AND (hardexpmap GT 0)

; Bin the color map to a signal-to-noise ratio of 5

targetSN=5d0

wvt_xraycolor, softflx, hardflx, softnoise, hardnoise, targetSN, $

binnedimage, mask=mask, ctsimage=ctsimage

; Save the color map

mwrfits, binnedimage, ’abinned.fits’, header



20

Chapter 4

WVT PIXELLIST: Binning of pixel lists

YET TO COME:

- Include example from IFS data by Cappellari and Copin



21

Chapter 5

Spectral maps with SHERPA/CIAO

In this chapter, I will briefly describe how to use WVT BINNING to generate

two-dimensional maps of spectral parameters. I will focus on the most common

application in X-ray astronomy, namely the creation of temperature maps. However,

the scripts are completely general and can be easily modified for the use with any

spectral parameter (e.g. metallicity, absorption, etc.).

The “cookbook“ section will give a brief overview about how to apply the

scripts to a typical example. The following section gives detail on how to use each

script individually and explains its functionality.

This chapter is not intended to explain the usage of CIAO, Sherpa or S-lang

tools or scripts. The intention is rather to give you an example on how one can

use the spatial binning for spectral fitting using these systems. A basic familiarity

with all the former languages will be necessary to modify these scripts to suit your

needs. You might also decide to trust me and use them as a black box. The scripts

were written and tested with CIAO 3.1 and CALDB 2.28. on a Sun Ultra80 station

running SunOS 5.8. They might be compatible with other unix systems or CIAO

versions, though I cannot guarantee its proper functionality there.

5.1 Cookbook

Before you start using the scripts, it is necessary to follow the general setup

that this script requires. First, the event2 file should be in the working directory and



22

named evt2.fits. There should also be a mask file mask.fits that contains 1 for good

data and 0 for bad data. Look at the examples in chapter 2 for ideas on how to create

such a mask. One should also have the bad pixel file in the directory or a parallel

../primary or ../secondary directory, for the CIAO script acis set ardlib to find it.

You will also need a copy of your ciao.csh (in CIAO/bin) in this directory.

# 1) General Setup

# 1.0) Copy event 2 file and bpix files into the working directory,

# and create the mask file

# 1.1) Unzip the tempmap package in the working directory

tar -xvzf tempmap.tar.gz

# 1.2) Sky coordinates to derive an image from, must match the mask file

setenv XMIN 3400

setenv XMAX 4500

setenv YMIN 3700

setenv YMAX 4800

# 1.3) Start CIAO

source ciao.csh -o

# 1.4) Execute the ciao script acis_set_ardlib

chmod +x acis_set_ardlib

punlearn ardlib

./acis_set_ardlib

# 1.5) Create the counts image

dmcopy "evt2.fits[bin x=${XMIN}:${XMAX}:1,y=${YMIN}:${YMAX}:1]" \

cts.fits clobber=yes verbose=2



23

# 2) Start IDL batch file wvt_temperaturemap to bin the image and extract

# event sublists for each bin

idl -queue wvt_temperaturemap

# 3) Start the csh-script tempmap_generic.csh.

# 3.1) If you decide to only use one rmf and arf file for the whole chip,

# i.e. you want to neglect the spatial dependence of the instrument

# response, create a file called "use_one_rmf":

touch use_one_rmf

# If this is not the case, the script will create a new rmf file for each bin.

# For a large number of bins, this will be very time consuming!

# 3.2) Modify the files redshift.dat and n_h.dat which contain the values for

# the redshift and the column density in the APEC model, which are read in

# during the fitting process and held fixed in this example.

echo 0.0002925 > redshift.dat

echo 1.6200000 > n_h.dat

# 3.3) Execute the automatic fitting script

chmod +x tempmap_generic.csh

./tempmap_generic.csh

# 4) Evaluate the output to create a temperature map

idl -queue wvt_evaltemperaturemap

5.2 Details of Single Steps

5.2.1 General setup

The temperature map script requires the following files to be present in the

working directory:

• evt2.fits: The file containing the event 2 list of X-ray photons. For computa-

tional reasons, it might be useful to restrict the event list to the CCD that you

are analysing.

• *bpix*.fits: Observation specific bad pixel file. The acis set ardlib scripts

will set the parameters for the RMF and ARF generators later, which will need

this information to function correctly.



24

• cts.fits: The counts image that has to be analysed. Here is an example on

how to create this image from the evt2 file:

punlearn dmcopy

dmcopy "evt2.fits[bin x=3400:4500:1,y=3000:4100:1]" cts.fits clobber=yes verbose=2

• mask.fits: File containing the mask for the field of analysis. Here is an example

on how to create a mask file from an exposure map and a CIAO region file:

# Create an empty image with the same dimensions and world coordinate system

# as your image file

dmimgcalc cts.fits cts.fits zeroimage.fits sub clobber=yes verbose=2

# Create the mask from the exposure map, by setting everything above 40% of

# the exposure map’s peak value to 1, the rest to 0

punlearn dmimgthresh

dmimgthresh infile=zeroimage.fits outfile=exposure_mask.fits \

expfile=expmap.fits cut=":40%" value=1 clobber=yes verbose=2

# Cut out the region that is contained in excludeme.reg

dmcopy "exposure_mask.fits[exclude sky=region(excludeme.reg)]" mask.fits clobber=yes verbose=2

• mark bgd.pi: The background spectrum file. This can be a extracted from

a local background region on the same chip, or taken from the Markevitch

background compilation, as shown in this example.



25

acis_bkgrnd_lookup $EVTFILE

setenv BGFILE ‘pget acis_bkgrnd_lookup outfile‘

# Attention: in this example, I do not ensure that the gain files of the bg and

# evt2 file match. See the CIAO homepage for more details.

cp $BGFILE bg.fits

# Reproject background events to fill the sky column correctly

punlearn reproject_events

reproject_events infile="bg.fits[cols -time]" outfile=bg_reproj.fits \

aspect=pcad_asol1.fits match=evt2.fits random=0 clobber=yes verbose=2

# Fill the time column

dmlist "bg.fits[#row=1][cols time]" data,clean >temp.dat

sed -e 1d temp.dat >time.dat

setenv TIME ‘sed -e ’s/ //g’ time.dat‘

punlearn dmtcalc

dmtcalc infile=bg_reproj.fits outfile=bg_final.fits expr="TIME=$TIME" clobber=yes verbose=2

# Create the bg pi spectrum

punlearn dmextract

dmextract infile="bg_final.fits[bin pi]" outfile=mark_bgd.pi

• wvt *.pro: The WVT binning suite of programs should be in the current di-

rectory or in a directory that is included in you $IDLPATH variable.

• acis set ardlib: CIAO script that sets parameters necessary for ARF and

RMF generation.

• ciao.csh: A copy of your PATH TO CIAO/bin/ciao.csh file.

• acisspec: CIAO script that creates ARF and RMF.

• fitsingletemp.sl: Sherpa S-lang script that does the automatic spectral fit-

ting.

• is file.sl: Sherpa S-lang script that determines if a file exists or not.

• n h.dat, redshift.dat: Files that are used during fitting and contain the

Galactic value for the column density and redshift of the target.

5.2.2 WVT TEMPERATUREMAP: Create the binning and extract event lists

wvt temperaturemap.pro is actually an IDL batch file, rather that a pro-

cedure or function. The reason for this is that you can execute it from within an



26

automated script with the simple command

idl -queue wvt_temperaturemap

The -queue option ensures that idl automatically waits for a license to be available

before starting, so you avoid the interactive question to wait for a license.

The default setup is such that WVT TEMPERATUREMAP reads in the counts im-

age (cts.fits) and bins it to a constant signal-to-noise per bin value of 30. This

corresponds to binning to 900 (302) counts per bin. The sophistication of your spec-

tral model determines what the value should be in your situation. In spectral fitting,

it is recommended to bin the spectrum within Sherpa to a minimum of 20 counts

later, i.e. 900 counts would correspond to about 45 spectral bins. This will decrease

depending on your background contribution to the counts. If you want to take the

background into account, edit wvt temperaturemap.pro (see chapter 2) for more

detail.

After binning, the program will automatically save the results and split the

evt2.fits file up into several files. The files with the names evt2.fits.X contain the

evt lists for the bins X. The corresponding evt2.fits.X.BACKSCAL files have the

BACKSCAL factor (i.e. the relative size of the bin X), needed by Sherpa to get

the normalization of the spectrum correct. The program will also create a file called

nbins.dat, that simply specifies the number of bins that were created.

5.2.3 tempmap generic.csh: Fit a spectral model with Sherpa

The main work is done by the C-shell script tempmap generic.csh and the

S-lang script fitsingletemp.sl. First, the CIAO procedure dmextract is evoked to

create a spectrum from the event list of the current bin. The CIAO script acisspec

is used to create the weighted ARF and RMF, corresponding to the bin region. If

a file named use one rmf is present, only the ARF and RMF of the first bin will

be computed and used for all other bins, in order to save time. If this file is not

present, the ARF and RMF will be computed separately for each bin. After this

step, the header of the spectrum file is automatically updated to include the correct

BACKSCAL (area), ANCRFILE (ARF) and RESPFILE (RMF) keywords.



27

fitsingletemp.sl lets Sherpa automatically read in the bin source spec-

trum, the background spectrum, the response, and parameter files. Then it adap-

tively bins the spectrum to a minimum of 20 counts per spectral bin and fits an

APEC (newer version of MEKAL) model to the spectrum by minimizing the χ2 devi-

ation. The temperature is then saved in the ascii file evt2.fits.X.temp, its positive

and negative 1σ error bounds in evt2.fits.X.tempcov. Please note that so far, there

are no “backup” or restart features built in for non-convergent fits. For cases where

the fit converges onto a non-physical solution, i.e. where the temperature parameter

bounds are stepped over or the fit didn’t converge, the temperature will be simply

reported as -1.

5.2.4 WVT EVALTEMPERATUREMAP: Generate the temperature map

Again, wvt evaltemperaturemap.pro is an IDL batch file that reads in the

fitted temperature values from evt2.fits.X.temp and applies it to the saved binning

scheme. This creates the 2-dimensional temperature map tempmap.fits



28

Chapter 6

Detailed description of parameters

Most keywords are common to the main binning algorithm, as well as their

different interfaces. The brackets indicate, for which algorithm the keyword is valid.

6.1 Keywords

6.1.1 PLOTIT [all]

This keyword regulates the amount of graphical output during the session.

The default value is “PLOTIT=0”, i.e. no output. Set this keyword to 1 (either via

“PLOTIT=1” or “/PLOTIT”) to produce a plot of the two-dimensional bin distribution

and of the corresponding S/N at the end of the computation. A value of “PLOTIT=2”

will produce a similar plot after the bin accretion step. Setting PLOTIT to 3, will

result in renewing the plots after each iteration. Having a file named “plotit” in

the working directory, has the same effect as setting “PLOTIT=3”. Note that plotting

can significantly slow down the speed of the binning algorithm, since WVT BINNING

operates on pixel lists. Thus, the plotting procedure is designed to plot each pixels

individually and can take rather long depending on the graphical capabilities of your

machine.

6.1.2 QUIET [all]

By default the program shows the progress while accreting pixels and then

while iterating the CVT (“QUIET=0”). Set this keyword to avoid printing progess



29

results. Be aware that the binning algorithm can run rather long in some cases,

depending on image size and bin sizes. Having text output does not negatively affect

the speed of the algorithm.

6.1.3 GERSHO [WVT BINNING, WVT IMAGE, WVT PIXELLIST]

WVT BINNING is based on an algorithm based on unweighted, centroidal Voronoi

tesselations (CVT Cappellari and Copin 2003), which exploits a property of CVTs,

known as Gersho’s conjecture. If you set the GERSHO keyword, the output will be

very similar to the output of Cappellari & Copin’s code VORONOI 2D BINNING, except

for some modifications in the bin accretion steps. However, be aware, that Gersho’s

conjecture is only valid for strictly positive data, where the S/N adds in quadrature!

6.1.4 SAVE ALL [WVT IMAGE, WVT XRAYCOLOR, WVT PIXELLIST]

Set this keyword to a variable (will be in structure format) that holds all

information that is necessary in order to restart the program from any given point.

Simply supply the SAVE ALL output and set the RESUME keyword. Its contents will

be overwritten with the updated binning information at the end. If this keyword is

supplied, all other input information will be ignored.

Example:

; Run wvt_image and save everything in

wvt_image,signal,noise,targetSN,binnedimage, save_all=save_all

; Save the structure save_all in a fits file

mwrfits, save_all, ’abinned_data.fits’

Have a look at the RESUME keyword to find out to restart from this point.

6.1.5 RESUME [all]

Set this keyword, if you want to start from an existing WVT, which is

uniquely defined by the vectors XNODE, YNODE, and SNBIN. The WVT iteration scheme

will be applied to the supplied WVT, and the values overwritten with the final output.

If you are using one of the interfaces (WVT IMAGE, WVT XRAYCOLOR, or WVT PIXELLIST),



30

you should use this keyword in conjunction witht the structure SAVE ALL.

Example:

; Restore the old session

save_all=mrdfits(’abinned_data.fits’,1)

; Pick up from this point and restart wvt_image

wvt_image,signal, noise, targetSN, binnedimage, save_all=save_all, /resume

6.1.6 KEEPFIXED [all]

Optional input vector containing x and y coordinates of bin generators that

you want to keep fixed in their position. The binning algorithm will move all other

bins around as usual. The size of this vector should be: (2, # of fixed bins). Example

use: Keep one bin fixed on the center of a galaxy.

Example:

; Define the center

center=[512.,512.]

; Run wvt_image, keeping the center fixed

WVT_IMAGE, signal, noise, targetSN, binnedimage, center=center, keepfixed=center

6.1.7 CENTER [WVT IMAGE, WVT XRAYCOLOR]

Optional input vector (size: 2) containing x and y values for the center. If

this keyword is not supplied, [0,0] will be assumed as the center and the algorithm

will start at the highest S/N pixel in the bin accretion step. If the center is given,

bin accretion will start at the center. For work with pixel lists (WVT BINNING or

WVT PIXELLIST), the X and Y coordinates should already have the center coordinates

subtracted.

6.1.8 MAX AREA [all]

Optional scalar, specifying a maximum bin size (in square pixels). We gen-

erally recommend the use of this keyword. bins. Essential in cases where there is



31

essentially no signal in a certain region (otherwise, the empty bins will “eat” into

the region with signal) or if spatial resolution is more important than a smooth S/N

distribution. This boundary is only approximate, but bins stay in general within a

few percent. Attention: In area where the bin size hits MAX AREA, the algorithm does

no longer enforce a uniform S/N anymore. Thus, be careful when interpreting the

resulting images. Always interpret in conjunction with the output S/N map (see also

SNBIN keyword).

Example:

; Adaptively bin the signal with a maximum bin size of a circle

; with a radius of approximately 25pixel:

max_area=!pi*25.^2

WVT_IMAGE, signal, noise, targetSN, binnedimage, max_area=max_area,$

snbin=snbin, binnumber=binnumber

; Create an S/N map from the bin distribution and its associated S/N

; values

sn_image=snbin[binnumber-1]

6.1.9 MASK [WVT IMAGE, WVT XRAYCOLOR]

Optional input, two-dimensional image (same size as the signal and noise

images). The MASK specifies, which pixels should be included in the WVT binning

algorithm. Valid pixels have to be designated as “1”, excluded pixels as “0” (integer

or byte). If your detector does not fill the field of view, this keyword is essential,

otherwise you will attempt to bin empty regions.



32

Example:

; Read in the exposure map

expmap=mrdfits(’expmap.fits’,0)

; Create a mask from the complete exposure map

mask=expmap GT 0

; To avoid large fluctuations in the border region of your

; fluxed image, you can use this simple prescription instead:

mask=expmap GT .1*max(expmap)

; To remove point sources from the binning, use the

; ‘‘source cell mask’’ (e.g. output of CIAO’s wavdetect algorithm)

cellmask=mrdfits(’cell.fits’,0)

mask[where(cellmask GT 0)]=0

; Supply the mask as a keyword to the binning algorithm

WVT_IMAGE, signal, noise, targetSN, binnedimage, mask=mask

6.1.10 CTSIMAGE [WVT IMAGE, WVT XRAYCOLOR]

Optional input, two-dimensional image (same size as the signal and noise

images) containing the counts per pixel. Often necessary for very sparse X-ray data,

where some pixels can contain no counts. In certain cases, you can then “artificially”

have a high S/N value for these empty pixel, e.g. when you ; subtract two background

corrected components (example: remove the point source contribution in ellipticals)

or compute X-ray colors. Supply the counts image in order to avoid that the bin-

ning algorithm produces bins without any counts. In case of producing a color image

from two distinct X-ray bands, one should supply the combined counts image of both

bands, as this image gives information about where the signal is located.



33

Example:

; Read in the signal and noise (here: fluxed image and variance)

signal=mrdfits(’fluximg.fits’,0, header)

noise=sqrt(mrdfits(’fluximg_variance.fits’,0))

; Read in the associated counts image

ctsimage=mrdfits(’ctsimg.fits’,0)

;Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, ctsimage=ctsimage

;Save the output in another fits image, keeping the WCS

mwrfits, binnedimage, ’abinned.fits’, header

6.1.11 BINNUMBER [all]

Optional output (size: npixels for WVT PIXELLIST and WVT BINNING, [nx,ny

for WVT IMAGE and WVT XRAYCOLOR) that contains the indices of the bin distribution.

The labels range from 1 to nbins, 0 is reserved for pixels outside the field of view, as

specified by the MASK keyword.

Example:

; Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, binnumber=binnumber

; Save the bin distribution over the field of view,

mwrfits, binnumber, ’abinned_binnumbers.fits’

6.1.12 SNBIN [all]

Optional output vector (size: nbins) that keeps track of the S/N for all indi-

vidual bins. In conjunction with BINNUMBER (see s6.1.11), this can be used to create

a map of the S/N distribution.



34

Example:

; Perform the binning, with target signal-to-noise of 5

targetSN=5d0

wvt_image, signal, noise, targetSN, binnedimage, $

snbin=snbin, binnumber=binnumber

; Save the distribution of SN over the field of view,

; remember that binnumber starts at 1!

snbin=[0,snbin]

mwrfits, snbin[binnumber], ’abinned_snr.fits’

6.2 External Interactive Controls

6.2.1 FILE “plotit” [all]

A good way to check the progress of the adaptive binning algorithm is to

have graphical output on the way (see also the PLOTIT keyword). If you decide that

you want to plot the iteration steps, create a file in the current directory with the

name ’plotit’. A simple way to do this is to issue the command ’touch plotit’ in a

shell. Remove the file if you want to stop plotting. This is useful when you want to

decide if stopping the binning algorithm prematurely will give you useful results (see

also “stopmenow”).

6.2.2 FILE “stopmenow” [all]

Sometimes, it is useful to be able to stop the algorithm manually. In cases

where computing time is an issue, you need to shut down the system, etc. If you

want to terminate the iteration at the next possible time, simply create a file named

’stopmenow’ in the current directory (e.g ; ’touch stopmenow’). If necessary, you can

resume the stopped session later with the help of the RESUME and SAVE ALL keywords.



35

Chapter 7

Sample Output

7.1 Text Output

The following example uses a subset of a Chandra observation of the Perseus

cluster core. The data are freely available on our WVT website in the package

test wvt image.tar.gz . In this section we will go through the example step by

step and include all text output that you will see. The optional graphical output is

described in the following section.

IDL> ; Run the adaptive binning algorithm

IDL> wvt_image,image,noise,targetSN,binnedimage,xnode,ynode,snbin=snbin,$

IDL> mask=mask, ctsimage=ctsimage, binnumber=binnumber, binvalue=binvalue, $

IDL> center=center, save_all=save_all, max_area=max_area, $

IDL> keepfixed=keepfixed

% Compiled module: WVT_IMAGE.

Bin-accretion...

...making neighbor list...

0 pixels done

10000 pixels done

20000 pixels done

30000 pixels done

40000 pixels done

50000 pixels done

60000 pixels done

This is the start of the binning process, where each pixel gets its associated

neighbor list computed. Every 10000 steps, you will get a line noting the progress of

the procedure.



36

Bin accretion started at the specified center:

First bin starts at 127.000 127.000

bin: 1 | S/N: 10.11 | n_pixels: 215 | 0.33 % done

bin: 2 | S/N: 10.01 | n_pixels: 171 | 0.59 % done

bin: 3 | S/N: 10.05 | n_pixels: 116 | 0.77 % done

bin: 4 | S/N: 10.02 | n_pixels: 123 | 0.95 % done

bin: 5 | S/N: 10.02 | n_pixels: 229 | 1.31 % done

[...]

bin: 366 | S/N: 10.07 | n_pixels: 207 | 97.57 % done

bin: 367 | S/N: 10.00 | n_pixels: 258 | 97.98 % done

bin: 368 | S/N: 10.04 | n_pixels: 239 | 98.36 % done

bin: 369 | S/N: 8.50 | n_pixels: 248 | 98.74 % done

bin: 370 | S/N: 10.00 | n_pixels: 306 | 99.21 % done

bin: 371 | S/N: 8.24 | n_pixels: 138 | 99.94 % done

607 initial bins.

Reassign bad bins...

371 good bins.

This is the output of the bin accretion step. The columns denote the current

number of the accepted bins, the signal-to-noise value of the bin, its size in pixels and

the total fraction of pixels that have been binned. After the bin accretion step, all

pixels of “bad bins” that didn’t meet S/N or roundness criteria are reassigned to its

closest neighbor.

(Extremely) modified Lloyd algorithm...

Initial WVT done.

Iteration 2, pixels that switched bins: 1.83868%

Iteration 3, pixels that switched bins: 1.28479%

Iteration 4, pixels that switched bins: 1.02386%

Iteration 5, pixels that switched bins: 0.849915%

[...]

Iteration 70, pixels that switched bins: 0.00152588%

Iteration 71, pixels that switched bins: 0.00152588%

Iteration 72, pixels that switched bins: 0.00000%

Iteration converged to a stable WVT solution

72 iterations.

Fractional S/N scatter (%) around target S/N: 4.4022827

Average S/N: 10.137795

Fractional S/N scatter (%) around average S/N: 4.3424460

The modified Lloyd algorithm represents the “heart” of the algorithm, where

the binning scheme continuously tries to reach a more uniform and self-consistent

bin distribution. Each iteration names the number and percentage of bins that have



37

switched bins. It is often advisable to stop the algorithm before one of the convergence

criteria is fulfilled to save computing time. However, this depends on your analysis

goal.

7.2 Graphical Output

Figure 7.1 give an example on what a typical graphical output from WVT BINNING

looks like. The top panel shows the two-dimensional distribution of bins, each bin

colored differently. The crosses indicate the locations of the bin generators. The

bottom panel shows the signal-to-noise distribution of the final bins, excluding those

with less than 2 pixels in size, as well as those reaching MAX AREA in size.



38

Figure 7.1: Top: Bin distribution, bin colors are random; Bottom: signal-to-noise distribu-
tion, excluding bins with less than 2 pixel and bins approaching MAX AREA



39

Chapter 8

Caveats

• The bin accretion algorithm is based on a neighbor search to increase speed.

Thus, bins are not able to cross gaps in the data (e.g. due to chip boundaries,

readout streaks, etc.) in the bin accretion stage.

• The algorithm can run rather slowly for large images with large bins. We rec-

ommend the use of the keyword MAX AREA in this case.

• The functions ADD SIGNAL and ADD NOISE are part of the wrappers WVT IMAGE,

WVT XRAYCOLOR and WVT PIXELLIST and not compatible with each other. So

you have to recompile the program you want to use first to make sure you use

the correct function. The wrappers have checks built in to warn you and will

exit if you use incorrect functions.



40

Bibliography

M. Cappellari and Y. Copin. Adaptive spatial binning of integral-field spectroscopic

data using Voronoi tessellations. MNRAS, 342:345–354, June 2003.

S. Diehl and T. S. Statler. An x-ray gas fundamental plane for elliptical galaxies.

ApJ, 2005.

A. C. Fabian, J. S. Sanders, S. Ettori, G. B. Taylor, S. W. Allen, C. S. Crawford,

K. Iwasawa, R. M. Johnstone, and P. M. Ogle. Chandra imaging of the complex

X-ray core of the Perseus cluster. MNRAS, 318:L65–L68, November 2000.

J. S. Sanders and A. C. Fabian. Adaptive binning of X-ray galaxy cluster images.

MNRAS, 325:178–186, July 2001.



41

Appendix A

WVT GENERIC: Adopting the binning

algorithm to your needs

A.1 General Description

The structure of the main binning algorithm WVT BINNING was held in a

very general way, in order to make the algorithm more flexible and applicable to a

broader variety of problems. The file wvt generic.pro contains a template on how

to adjust the algorithm to your own needs. It is also very instructive to have a look

at wvt image.pro, wvt xraycolor.pro and wvt pixellist.pro and to use them as

guidance.

For WVT BINNING, all information that you need in order to calculate the

combined signal of the bin, has to be contained in a global variable named P. P has

to be a structure containing scalars and/or vectors, which are generally of length

npixels. The functions ADD SIGNAL and ADD NOISE determine how to compute the

combined signal and noise for the bin. The only parameter given to these function

are the indices of the bin members, locating the correct pixel properties in the arrays

of P.

The next section will give you a hands-on tutorial on how to implement this.



42

A.2 Step-by-step Guide

Step 1: The variable P

In order to compute the signal-to-noise ratio of a bin, one needs two types of

information: The properties of all pixels and the information on which pixels belong

to the bin in question. In step 1, we define a globally accessible structure P to deal

with the first issue. P stores all of the pixel properties and constants necessary to

compute the signal-to-noise ratio of a bin.

COMMON DATAVALUES, P

P={ pixprop1: dblarr(npix), $

pixprop2: fltarr(npix), $

pixprop3: lonarr(npix), $

constant1: 3.142d0 , $

constant2: 9L }

The number of tags (here: 5), as well as their names (here: pixprop1,

pixprop2, pixprop3, constant1 and constant2 are irrelevant and only used in the

functions ADD SIGNAL and ADD NOISE, which are defined by the user. The structure

should hold all the information that you need to add signal and noise correctly. There

is no limit on how much information P can contain, and which nature it should be.

In this example, the pixprop* tags could describe pixel properties (since they are

vectors of length npixels), such as the flux, counts, noise or the exposure in each pixel.

Step 2: Define the function ADD SIGNAL

FUNCTION ADD_SIGNAL, index

COMMON DATAVALUES, P

RETURN, total(P.pixprop1[index])

END

This is the simplest example on how your ADD SIGNAL function could look

like. This function takes the global variable P and adds up the pixel property

pixprop1 of all bin members (→ INDEX). The recipe on how compute the signal

can be as easy or complicated as is required by the specific problem. This would be

a real example if pixprop1 was something like a flux per pixel.



43

Step 3: Define the function ADD NOISE

FUNCTION ADD_NOISE, index

COMMON DATAVALUES, P

RETURN, sqrt(total(P.pixprop2[index]^2))

END

The usage of ADD NOISE is completely analogous to ADD SIGNAL, with the only

difference that the combined noise of the bin should be returned. In the example case,

the square root of the sum of all squares of pixprop2, similar to a real example of

adding gaussian errors.

Step 4: Start WVT BINNING

Now we have everything set up to successfully start the adaptive binning.

All we have to do is to call the main binning program WVT BINNING.

WVT_BINNING, x, y, pixelSize, targetSN, $

class, xNode, yNode, area, QUIET=quiet, $

dens=dens, binvalue=binvalue, snbin=snbin, plotit=plotit, $

resume=resume, neighborlist=neighborlist, max_area=max_area, $

gersho=gersho, keepfixed=keepfixed

As you can see, nothing has changed in the way WVT BINNING is being used.

All we did was to introduce a new way to compute the signal-to-noise ratio of the

bins. We have to be sure that the correct functions ADD SIGNAL and ADD NOISE are

precompiled and that we have the global variable P initiated.


	Preface
	Table of Contents
	Desciption of the adaptive binning method (WVT_BINNING)
	Modified bin accretion
	Redistribute unbinned pixels
	WVT iteration

	WVT_IMAGE: Intensity binning of X-ray images 
	General Description
	Main Parameters 
	SIGNAL [input, required]
	NOISE [input, required]
	TARGETSN [input, required]
	BINNEDIMAGE [output, required]
	XNODE, YNODE, WEIGHT [output, optional]

	Prescription to compute signal to noise
	Applications 
	Binning of X-ray counts images
	Binning of exposure corrected flux images
	Binning of background corrected images
	Isolating components of linear combinations of images


	WVT_XRAYCOLOR: Binning of Hardness Ratios 
	General Description
	Main Parameters 
	SIGNAL [input, required]
	NOISE [input, required]
	SIGNAL2 [input, required]
	NOISE2 [input, required]
	TARGETSN [input, required]
	BINNEDIMAGE [output, required]
	XNODE, YNODE, WEIGHT [output, optional]

	Prescription to compute signal to noise
	Applications 
	Count hardness ratios
	Background corrected flux hardness ratios


	WVT_PIXELLIST: Binning of pixel lists 
	Spectral maps with SHERPA/CIAO 
	Cookbook
	Details of Single Steps
	General setup
	WVT_TEMPERATUREMAP: Create the binning and extract event lists
	tempmap_generic.csh: Fit a spectral model with Sherpa
	WVT_EVALTEMPERATUREMAP: Generate the temperature map


	Detailed description of parameters 
	Keywords
	PLOTIT [all]
	QUIET [all]
	GERSHO [WVT_BINNING, WVT_IMAGE, WVT_PIXELLIST] 
	SAVE_ALL [WVT_IMAGE, WVT_XRAYCOLOR, WVT_PIXELLIST]
	RESUME [all]
	KEEPFIXED [all]
	CENTER [WVT_IMAGE, WVT_XRAYCOLOR]
	MAX_AREA [all]
	MASK [WVT_IMAGE, WVT_XRAYCOLOR]
	CTSIMAGE [WVT_IMAGE, WVT_XRAYCOLOR]
	BINNUMBER [all]
	SNBIN [all]

	External Interactive Controls
	FILE ``plotit'' [all]
	FILE ``stopmenow'' [all]


	Sample Output
	Text Output
	Graphical Output

	Caveats
	Bibliography
	WVT_GENERIC: Adopting the binning algorithm to your needs 
	General Description
	Step-by-step Guide


